根据菊粉酶在微生物体内主要分布于细胞内、细胞壁和细胞外,分别称为胞内酶、胞壁结合酶和胞外酶,它们的比例主要受菌种、碳源、温度和ph的影响(ettalibi等,1990):(1)随着温度的升高胞外酶比例下降,而其他两种酶比例上升;(2)以菊粉或蔗糖为碳源培养微生物时,前者胞外酶比例高于后者,其他两种酶则;(3)胞外酶主要由真菌合成,细胞壁结合酶主要产自酵母;(4)适当的ph使细胞壁通透性增大,提高了胸外酶比例,其他两种酶比例下降。
根据来源菊粉酶可以分为微生物菊粉酶和植物菊粉酶。
2.2ph值对活力的影响菊粉酶Zui适ph为弱酸性,这一性质不仅操作安全,使用过程中可以防止微生物污染,也是果糖Zui稳定的ph值。
菊粉酶的来源很广,自然界中的植物以及土壤、水中的多种微生物都可以分泌菊粉酶。微生物来源的菊粉酶种类多,热稳定性好,适于发酵生产。据不完全统计,产菊粉酶的有丝状真菌17个属物余种,酵母菌10个属20余种,细菌12个属10余种。目前有不少研究人员仍在致力于筛选新的产酶菌种,并对现有菌种进行改造,以得到高酶活、热稳定性好的生产菌株。大多数微生物菊粉酶均为外切型菊粉酶,并且常常呈现出转化酶活力,转化酶是一种水解蔗糖为葡萄糖和果糖的酶,对葡粉没有作用。
常见的酵母和真菌中分离的酶多具有菊粉酶和转化酶活性,为区分两者,人们常采用“e=菊粉酶总酶活+转化酶总酶活”的公式,当e>0.02为菊粉酶,e<0.02则为转化酶。菊粉酶酶活定义为在一定的反应条件下每分钟释放lμmol果糖所需酶量;转化酶酶活定义为每分钟水解1μmol蔗糖所需的酶量。由于测定菊粉酶酶活的定义没有统一标准,酶活的单位也有不同。
6.2酶活测定黎明兰等(1995)用菊芋提取液做培养基。发酵后取0.05ml发酵液加4.5ml5%菊粉液,55℃反应30min,沸水浴煮10min终止酶活,在同样的反应系统和条件下加入沸水浴煮10min的酶作空白对照。取一定量反应液用费林试剂热滴定法测糖(北京大学生物系生物生化教研室,1986)。酶活单位定义为:在上述反应条件下生成lμmol/min还原糖所需酶量为1个酶活单位。
7.l利用菊粉酶生产高果糖浆由于高果糖浆价格低廉,味甜,爽口,渗透压高,保藏效果好,热值低,患者可利用,在美、日等发达国家被广泛用于食品和医药工业。20世纪70年代以后,各国开始关注以菊粉为原料,以酸法和酶法水解制备果糖。酸法产量高,但副产物多,色素重,分离精制难。80年代,美国、法国人b利时、加拿大等国的研究人员开始研究利用菊粉酶制果糖,其工艺简单,转化率高,产物纯,果糖产量高,可直接生产超高果葡糖浆(uhfgs),果糖含量90%以上。为此美国、英国、丹麦、法国、加拿大等发达国家都在进行研究。菊粉酶在果糖及果葡糖浆的生产上具有巨大的开发应用潜力。外切菊粉酶降解产物以果糖为主且果糖比例高。菊粉酶生产高果糖浆的研究国内外都较多,我国对其研究还处于起步状态。
7.3利用菊粉酶生产酒精利用菊粉酶生产酒精,国外相关研究较多。国外有报道指出,用aa-pergillusniger(schorr-garlindo等,1995)、k.fragilis(ohta等,1993)或k.margaritis(margantis等,1982)发酵菊粉生产酒精,aspergll。niger转化率为明%以上(v/v),后两者几乎能完全将菊粉发酵成酒精。发酵粗菊芋提取液,不需加其他营养物质,25h内酒精产量87.8%。
我国在菊粉酶的研究和应用中遇到的主要困难是:(1)产酶成本高,导致应用成本高。主要表现在产酶菌株的菊粉酶产量低,提高了应用成本,制约了低聚果糖在食品工业和饲料工业中的应用。(2)菊粉酶酶活测定及酶活力单位在定义上不统一,不利于研究者之间的交流和沟通。酶活力的测定方法对确定菊粉酶活力水平、特异性及归类有重要意义。但在菊粉酶活力测定方法及酶活力单位定义上尚未统一。多数菊粉酶活力测定报道,是以不同聚合度、纯度和浓度的菊粉或蔗糖做底物,测定反应混合物在一定时间内还原糖的增加量。内切型菊粉酶的酶解产物多为低聚果糖和少量果糖,按现有的酶活测定法及酶活定义,其酶活水平将普遍比外切型菊粉酶低。测定和活力单位定义标准的统一是急需解决的问题 <pstyle="color: rgb(51, 51, 51); font-family:; font-size: 14px;"background-color:#ffffff;"="">