PMB蓄电池LCPA10-12 详细规格说明
PMB蓄电池结构
单体电池由正极板、负极板、隔板、和端子组成并配有安全阀。这些部件装入ABS壳体,并配以ABS上盖。
1、极板:正负极板由氧化铅涂于铅钙合金板栅制成,可**充电。2、隔板:用高耐久性的超细玻璃纤维用作隔板,可吸收电解液并保持良好的电流传导性。3、安全阀:由特殊橡胶制成,当过充后内压加大引起气体过多时,安全阀可开启。4、壳体及上盖:由防酸及耐久性的ABS材料制成,密封并可防止漏液。
技术特点:
1、简洁的外形设计,新颖的电池整体结构设计,确保电池美观大方,装卸方便,申请国家专利。
2、选用--耐用的进口隔板 选用电阻更小,更腐蚀,孔径更小,孔率更高的进口PE隔板。
3、科学的板栅结构采用中极耳放射板栅设计,降低电池内阻,更有效的提高了电池的大电流启动能力。大大提高了电池性能。
4、**的合金配方 采用高纯度多元铅基合金,使板栅具有良好耐腐性能,析气量小,水损耗低,自放电小,保证了电池寿命长。
5、充足的电池容量 ,保证了电池良好的高倍率、大电流启动放电性能好,性能优良
6、优异的供电性能 电池在加入电解液后即可装车使用,免充电,使用方便
PMB蓄电池维护与保养
1、电解液液面应始终保持在max和min之间,每月检查一次,并视
2、液面下降情况,适当补充蒸馏水(纯水) *切勿加酸
3、当电池的电压不足且灯光暗淡、起动无力时,应及时进行车外充 电。
4、防止蓄电池过充电或长期亏电,过充会使活性物质脱落,亏电会 使极板硫化,要保证调节器电压不能过高或过低。
5、使用过程中,应经常检查排气孔是否畅通,以防电池变形或爆裂。
6、电池应远离热源和明火,充电及使用时应保持通风,以防燃烧伤人。
7、防止蓄电池长时间大电流放电,每次使用启动时间不能大于5秒, 两次连续启动时间,中间间隔10-15秒。
适用于精密仪器 太阳能 电力 电厂 电站消防安防安全系统 船舶通讯领域 大中小型ups设备路灯免维护电瓶等等
蓄电池售后服务:
1. 对售出的电池我们建立《顾客档案》,实行服务。
2. 电池售出后,实行随时电话,并执行每年至少一次的**巡检,并向顾客报告蓄电池使用情况,让顾客用的放。
3. 发生顾客投诉时,一小时内提供解决方案。包括现场恢复方案及退货处理方案,直到顾客满意。宗旨是将客户的麻烦降到小。
4.正常情况下,退回电池在到货两周内出具检测报告,确属我司原因我司承担责任;非我司电池原因,我们出具相应报告,对顾客的使用加以指导
质保规则:
期限:视使用方法及使用客户,质保期为三年。
使用说明:铅酸蓄电池长时间放置三个月要为电池补充电量,放置半年让电池充放一次,达到一个循环;使用过程中,切忌把电放干再充电,对电池影响很大,要 随用随充电,充满为止,但也不要过充、过放电。
包装:为纸箱,根据运输距离可打扎带,可打木箱。纸箱包装:1只/箱,采用物流长途运输或两箱打一个包装,节约运输费用。
运输:样品可采用快递方式,批 量货,可采用物流或客车, 部分地区根据长期经销商情况可采用代收款的方式或预付30%--70%定金,余款代收的方式。
验收:不管采用哪种方式运输货物,请客户和收货人一定在承运单位当事人在场时当场查验收货,查看外包装,是否破损,变形,是否沾水,小件可拿起来晃动,听听内部是否有配件脱落,用手捏一捏内部是否有碎屑或裂缝等,确保我们的货物和产品到达目的地。若遇到不可抗因素,我们三方可协调解决运输问 题。
供方责任:
38AH(含38AH)以上蓄电池,质保期为三年,三年出现任何非人为质量问题,免费更换全新的同品牌同型号规格的蓄电池.非人为质量问题包括:运输过程中造成的电池破损、鼓包、漏液、电池电压范围异常、接线端子变形等.
客户责任:
1.客户可凭我公司的采购合同编号,并提供破损蓄电池详细照片,通过验证后立即向客户免费派发指定型号的蓄电池.
2.客户在收到更换的全新蓄电池后,请立即将损坏的蓄电池发往供货公司.
亲爱的顾客,感谢您的关注与支持。为了我们能够更好的沟通和拥有愉快的交易,请购物前多花几分钟看看下面的文字,祝您购物愉快!
一:如何订货
①随身手机 跟我们联系;
②或联系,把您的要求详细描述下!
二:订货前请联系
我们严格按照每一位客户的规格,数量及质量要求来发货;请广大客户在购买前能联系在线,协商好品牌型号事项。
三:关于价格
本司所有展视商品价格均为参考价,商品的实际价格问题需与我司商议!我司遵守的原则,给与优惠!
移动基站的特殊工作环境与工况,决定了对移动基站通信电源系统的特殊要求。结合为移动基站提供电源的实践与经验教训,提出了移动基站通信电源系统可靠性、可维性和可用性解决方案。该方案已经在我们的产品中得以实现,并在具体应用中得到验证。实践表明,模块的带电插拔特性、空载运行特性、允许输入电压波动范围大、故障诊断功能、自然冷却方式对移动基站电源系统是非常需要的。
随着保护环境、节约资源的呼声日益高涨,电动汽车作为无污染、能源可多样化配置的新型交通工具,引起了人们的普遍关注,并得到了极大的发展。
电动汽车工业的迅速发展,推动了全球机械、能源等工业的进步以及经济、交通等方面的发展,极大地方便了人们的生活。在电动汽车性能提高并逐步迈向产业化的过程中,提高能量的储备与利用率是迫切需要解决的两个问题。如何提高电动汽车能量利用率是一个非常关键的问题。有关研究表明,在较频繁的制动与起动的城市工况运行条件下,有效地回收制动能量,可使电动汽车行驶距离延长10%—30%。如何高效率地回收和利用再生能量已经成为电动汽车技术研究的重要问题与热点问题。
现有的电动汽车制动能量回收的方法几乎都是利用电机的可逆性,即电动机在特定的条件下可以转变成发电机,使电机在电动机与发电机两种工作模式转换,以实现车辆的驱动和制动能量回收。目前常见的制动能量回收方法是,在制动时采用回馈制动,使电机运行在发电机状态,将制动产生的回馈电流充入储能装置中,从而回收一部分能量,提高电动汽车的行驶里程。这种方法的缺点在于,驱动电机用作发电机的发电效率低于专门发电的发电机的发电效率,限制了制动能量回收的效率。
电机驱动是电池放电的过程,电机发电会向蓄电池充电,在电动汽车行驶和制动的过程中,蓄电池反复地频繁地充、放电,充、放电的具体工况是变化的,易导致蓄电池寿命大大降低。这样,回收了很少的电能,却损坏了昂贵的驱动蓄电池。充、放电过程均涉及到控制模块,充电过程涉及充电控制,放电过程涉及放电控制,将原本就非常复杂的充、放电过程糅合在一起,会使得控制变得更加困难,给控制带了难度,增加了成本。